Color Evolution and Thermal Behavior of Silica $(SiO₂)$ and Zircon ($ZrSiO₄$)-coated Nano α -Fe₂O₃ Pigments

Ri Yu,^{1,2} Jae-Hwan Pee,¹ Kyung Ja Kim,¹ and YooJin Kim^{*1}

¹Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology, Icheon 467-843, Korea ²Department of Materials Science and Engineering, Korea University, Seoul 136-713, Korea

(Received September 15, 2011; CL-110760; E-mail: yjkim@kicet.re.kr)

This manuscript reports coloration and thermal behavior of the silica and zircon effect on α -Fe₂O₃ pigment. The prepared three types of pigments were heat-treated at various temperatures (800–1000 \degree C), and their color evolutions were characterized by colorimeter and UV-visible spectroscopy.

Red color α -Fe₂O₃ has attracted much interest owing to recent demand for nontoxic, Cd-free pigments.¹ In particular, the coloration of nanosized α -Fe₂O₃ is controllable depending on the synthetic conditions. $2-4$ In general, ceramic pigments must possess thermal stability at high temperature. However, nanosized red pigment easily undergoes aggregation at high temperature, and its color turns to brown. To obtain a stable and bright color, it is necessary to encapsulate α -Fe₂O₃ in a more stable phase such as silica $(SiO₂)$ or zircon $(ZrSiO₄)$. Several groups have studied silica inclusion red pigment in a silica matrix using FeSO₄ \cdot 7H₂O as an iron oxide precursor.^{5,6} Recently, welldesigned core-shell red pigments were prepared using nanosized α -Fe₂O₃ and silica (SiO₂) from tetraethyl orthosilicate (TEOS) as starting materials.⁷ Silica is particularly attractive for use as a coating and various applications due to its high thermal stability and transparency. $8,9$ Another promising encapsulator, ZrSiO₄, is commonly used in the ceramic industry for glazes due to its high chemical and thermal stability at firing temperature.¹⁰ Zircon ($ZrSiO₄$) was sintered from $ZrO₂$ and $SiO₂$ layers which are coated separately in a corresponding solution.^{11,12} In this work, we propose two well-designed core-shell nanopigments using silica $(SiO₂)$ and zircon $(ZrSiO₄)$ prepared by a hydrolysis method and compare the resulting color evolution to that of α -Fe₂O₃ nanoparticles. Sphere-shaped α -Fe₂O₃ nanoparticles were prepared via a hydrothermal method as described elsewhere.^{2,13} Silica-coated α -Fe₂O₃ was synthesized following a modified version of a method from the literature.⁷ The α -Fe₂O₃ (40 mg) nanoparticles were dispersed in 100 mL of distilled water by sonication for 5 min followed by the addition of 1 wt % cetyltrimethylammonium bromide (CTAB) (1 mL). Then, 10 mL of (0.02 M) aqueous zirconium sulfate solution was added dropwise to the above solution at room temperature for 2 h. After zirconia $(ZrO₂)$ shell of about 16–25 nm thick, silica layers $(SiO₂)$ were fabricated using the Stöber method in an ethanolwater solution of TEOS. α -Fe₂O₃, α -Fe₂O₃@SiO₂, and α -Fe₂O₃@ZrO₂@SiO₂ were sintered at 800, 900, and 1000 °C for 1 h at a heating rate of 10° C min⁻¹. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy dispersion spectroscopy (EDS) equipment. Color measurements were performed by UV-vis spectroscopy, using the CIE Lab method.

A typical TEM image (Figure 1a) shows the sphereshaped α -Fe₂O₃ particles with an average diameter of 150 nm.

Figure 1. TEM images of (a) α -Fe₂O₃ nanoparticles (bar: 100 nm), (b) α -Fe₂O₃@SiO₂ nanoparticles, (c) α -Fe₂O₃@ZrO₂@SiO₂ nanoparticles and EDS spectra of spots $(P1)-(P2)$, respectively, in insert image.

Figure 1b shows TEM image of silica-coated α -Fe₂O₃ nanoparticles that have a silica layer with a thickness of around 45 nm. CTAB was chosen as a surface modifier, and α - $Fe₂O₃@CTAB@SiO₂$ was successfully prepared. Synthesis of $ZrSiO_4$ -coated α -Fe₂O₃ is done through sintering from ZrO_2 and SiO_2 -coated α -Fe₂O₃.^{11,12} The ZrO₂ layer and SiO₂ layer are obtained separately in corresponding solution by hydrolysis. A TEM photograph (Figure 1c) of the as-prepared particles clearly indicates that the α -Fe₂O₃ particles were coated with double shells. The $ZrO₂$ and $SiO₂$ shells were about 25 and 9 nm in thickness, respectively. The EDS results in P1 and P2 confirm the formation of $ZrO₂$ and $SiO₂$ layers, as indicated by the TEM photograph in Figure 1c.

When the α -Fe₂O₃ nanoparticles were heated to 1000 °C, the result was extensive agglomeration of the nanoparticles to form microsized units (Figures 2a and 2d-I). At the same time, silicacoated α -Fe₂O₃ nanoparticles retained their shapes after being heated to 1000 °C, as illustrated in Figure 2b. Figure 2d shows the XRD pattern of α -Fe₂O₃, α -Fe₂O₃@SiO₂, and α -Fe₂O₃@ ZrSiO₄ after being heated at 900 °C. Unfortunately, α -Fe₂O₃[@] $ZrO_2@SiO_2$ core-shell structure was not found in the XRD pattern at 1000 °C, due to aggregation and melting in the glassy matrix after heating (Figure 2c). In case of α -Fe₂O₃@SiO₂ at 900-1000 °C, amorphous $SiO₂$ was crystallized which was indexed and comparable with room temperature data (Figure 2d-II).⁷ When samples were treated at 900° C, the formation of ZrSiO₄ phase was observed in Figure 2d-III. LiF easily reacts with $SiO₂$ to from $SiF₄$ during heat treatments which can induce ZrSiO₄ formation at low temperature (<850 °C).^{10,14}

The color of the α -Fe₂O₃ and core–shell structure was assessed on the grounds of L^* , a^* , and b^* parameters, calculated from the diffuse reflectance spectra. In this method the parameter L^* represents the brightness of the sample; a

Figure 2. TEM images of after heating at $1000\degree C$ (a) α -Fe₂O₃ nanoparticles, (b) α -Fe₂O₃@SiO₂ nanoparticles, (c) α -Fe₂O₃@ $ZrO₂@SiO₂$ nanoparticles, and (d) XRD data of three samples at 900 °C (I: α -Fe₂O₃, II: α -Fe₂O₃@SiO₂, III: α -Fe₂O₃@ZrO₂@SiO₂).

positive a^* value represents red, a negative value shows green. It is said that red pigments show a high red color tone with increasing a^* . Silica did not affect red color tonality due to its high transparency. As temperature increases, the a^* and b^* factors of α -Fe₂O₃ evidently decreased due to the aggregation and morphological change of nanosized α -Fe₂O₃ (Figure 3a). At 1000 °C, a^* and b^* values of α -Fe₂O₃@ZrO₂@SiO₂ decreased to near 0 and turned to brownish gray because lithium iron silicate was melted in the glassy matrix (Figure 3c). On the other hand, the constant a^* and b^* values in the α -Fe₂O₃@SiO₂ samples indicate that the level of red pigments was relatively stable. The a^* value of α -Fe₂O₃@SiO₂ was about 18, which is comparable to the value found in a spindle-type core structure (Figure 3b). $⁷$ </sup>

The color of the prepared powders was characterized by reflectance spectra in the wavelength range from 350 to 800 nm by UV-vis spectroscopy (Figure $S1^{16}$). Figure $S1^{16}$ presents the reflectance curves of α -Fe₂O₃, α -Fe₂O₃@SiO₂, and α -Fe₂O₃@ $ZrO_2@SiO_2$, respectively. The reflectance value is strongly influenced by the mean diameter.¹⁵ Silica-coated α -Fe₂O₃ shows higher reflectance in a longer wavelength region (700-800 nm) than the others pigments do. After heat treatment at 900 °C, reflectance of the silica-coated α -Fe₂O₃ had increased due to high scattering of silica surface which is related to the increased L^* values in the CIE Lab at 900 °C (Figure 3b).

In summary, we report the well-designed synthesis of coreshell structure; α -Fe₂O₃, α -Fe₂O₃@SiO₂, and α -Fe₂O₃@ $ZrO_2@SiO_2$ have been achieved by development of the

Figure 3. The CIE L^* , a^* , and b^* values of the pigments in comparison with the values of (a) α -Fe₂O₃, (b) α -Fe₂O₃@SiO₂, and (c) α -Fe₂O₃@ZrSiO₄ at various temperatures at RT, 800, 900, and 1000 °C. Color evolution data (RT, 1000 °C) were showed (Data at 800 and 900 °C are not indexed for clarity).

hydrolysis method. Especially, zircon-coated α -Fe₂O₃ particles were coated with a double shell of zirconia and silica. At high temperature, α -Fe₂O₃ and zircon-coated α -Fe₂O₃ particles show large coloration change due to morphological change of nanosized α -Fe₂O₃ and melting in the glassy matrix. Silica-coated α -Fe₂O₃ is highly stable optical properties at 1000 °C.

This work was supported by Energy & Resource R&D program under the Ministry of Knowledge Economy, Republic of Korea.

References and Notes

- 1 M. Jansen, H. P. Letschert, [Nature](http://dx.doi.org/10.1038/35010082) 2000, 404, 980.
- 2 H. Katsuki, S. Komarneni, [J. Am. Ceram. Soc.](http://dx.doi.org/10.1111/j.1151-2916.2003.tb03300.x) 2003, 86, 183.
3 H. Katsuki. S. Komarneni, J. Am. Ceram. Soc. 2001, 84, 2313
- H. Katsuki, S. Komarneni, [J. Am. Ceram. Soc.](http://dx.doi.org/10.1111/j.1151-2916.2001.tb01007.x) 2001, 84, 2313.
- 4 T. Sugimoto, Y. Wang, H. Itoh, A. Muramatsu, Colloi[ds Sur](http://dx.doi.org/10.1016/S0927-7757(97)00103-9)f., A 1998, 134[, 265.](http://dx.doi.org/10.1016/S0927-7757(97)00103-9)
- 5 F. Bondioli, A. M. Ferrari, C. Leonelli, T. Manfredini, [Mater. Res. Bu](http://dx.doi.org/10.1016/S0025-5408(98)00047-6)ll. 1998, 33[, 723](http://dx.doi.org/10.1016/S0025-5408(98)00047-6).
- M. Hosseini-Zori, F. Bondioli, T. Manfredini, E. Taheri-Nassaj, [Dyes](http://dx.doi.org/10.1016/j.dyepig.2007.03.006) Pigm. [2008](http://dx.doi.org/10.1016/j.dyepig.2007.03.006), 77, 53.
- 7 Y. Kim, J.-H. Pee, J. H. Chang, K. Choi, K. J. Kim, D.-Y. Jung, [Chem.](http://dx.doi.org/10.1246/cl.2009.842) Lett. 2009, 38[, 842](http://dx.doi.org/10.1246/cl.2009.842).
- 8 D. K. Yi, S. T. Selvan, S. S. Lee, G. C. Papaefthymiou, D. Kundaliya, J. Y. Ying, [J. Am. Chem. Soc.](http://dx.doi.org/10.1021/ja0428863) 2005, 127, 4990.
- 9 Y. Lu, Y. Yin, Z.-Y. Li, Y. Xia, [Nano Lett.](http://dx.doi.org/10.1021/nl025598i) 2002, 2, 785.
- 10 F. Bondioli, T. Manfredini, C. Siligardi, A. M. Ferrari, [J. Eur. Ceram.](http://dx.doi.org/10.1016/j.jeurceramsoc.2003.12.017) Soc. 2004, 24[, 3593](http://dx.doi.org/10.1016/j.jeurceramsoc.2003.12.017).
- 11 S. Schelz, F. Enguehard, N. Caron, D. Plessis, B. Minot, F. Guillet, J.-L. Longuet, N. Teneze, E. Bruneton, [J. Mater. Sc](http://dx.doi.org/10.1007/s10853-007-2406-z)i. 2008, 43, 1948.
- 12 E. Ozel, S. Turan, [J. Eur. Ceram. Soc.](http://dx.doi.org/10.1016/j.jeurceramsoc.2006.05.008) 2007, 27, 1751.
- 13 T. Sugimoto, A. Muramatsu, K. Sakata, D. Shindo, J. Colloi[d Inter](http://dx.doi.org/10.1006/jcis.1993.1274)face Sci. 1993, 158[, 420.](http://dx.doi.org/10.1006/jcis.1993.1274)
- 14 S. Ardizzone, G. Cappelletti, P. Fermo, C. Oliva, M. Scavini, F. Scimè, [J. Phys. Chem. B](http://dx.doi.org/10.1021/jp054254o) 2005, 109, 22112.
- 15 F. Hund, [Angew. Chem., Int. Ed. Eng](http://dx.doi.org/10.1002/anie.198107231)l. 1981, 20, 723.
- 16 Supporting Information is available electronically on the CSJ-Journal Web site, [http://www.csj.jp/journa](http://www.csj.jp/journals/chem-lett/index.html)ls/chem-lett/index.html.